Acta Cryst. (1997). C53, 344-345

2,2-Dimethyl-2,3-dihydro-1H-2-silacyclopenta[$l]$ phenanthrene \dagger

Trixie Wagner, Hans-W. Marx and Stefan Moss
Institut fuer Anorganische Chemie, RWTH Aachen, Prof.-Pirlet-Str. 1, 52074 Aachen, Germany

(Received 28 May 1996; accepted 23 October 1990)

Abstract

Starting from 9,10-dimethylphenanthrene, the title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Si}$, was synthesized in two steps. Bond lengths and angles within the planar carbon skeleton show no deviation from normal values. The five-membered ring adopts an envelope conformation. Molecules pack in a herring-bone-type layer structure. There are no intermolecular $\mathbf{C}-\mathrm{H}$ distances below 2.90 Å.

Comment

2,2-Dimethyl-2,3-dihydro-1 H -2-silacyclopenta[l]phenanthrene, (I), crystallizes in the orthorhombic space group $P b c a$, with $Z=8$. The molecules form $A B A B$ layers along the crystallographic b axis, A and B being related by a center of symmetry. We note that the molecular axes, defined by the vector from the midpoint of the $\mathrm{C} 4-\mathrm{C} 5$ bond to the Si atom, point in the same direction within each layer. The interplanar angle between adjacent molecules in one layer (related by the screw axis parallel to a) is 58°, and in this way the crystal structure resembles those found for phenanthrene (Trotter, 1963) and 9,10-dimethylphenanthrene (Johnson \& Jones, 1989). A stereoview of the packing has been deposited.

(I)

The carbon skeleton of the title compound is essentially planar [maximum deviation from the best plane through $\mathrm{C} 1-\mathrm{C} 16$ is 0.018 (2) \AA for C 1$]$. The Si atom is displaced by 0.204 (1) \AA from this plane, giving rise to an interplanar angle of $8.8(3)^{\circ}$ between the $\mathrm{Si}, \mathrm{Cl} 5$, C16 plane and that of the phenanthrene nucleus. As ex-
\dagger The authors would like to dedicate this publication to Professor Dr G. E. Herberich on the occasion of his 60th birthday.
pected, the allylic $\mathrm{Si}-\mathrm{C}$ bonds are significantly longer [0.020 (2) \AA] than the aliphatic bonds ($c f$. Table 1).

Corresponding bond lengths and angles are equivalent within the limits of their estimated standard deviations. The idealized local symmetry is therefore m. On the NMR time scale, the molecular symmetry is mm 2 . Both an average structure due to rapid interconversion between different conformers and a planar mm 2 structure in solution are in agreement with these experimental results. AM1 (Dewar \& Jie, 1987) calculations show no significant energy difference (less than $0.1 \mathrm{kcal} \mathrm{mol}^{-1}$) between the latter (high symmetry) and the conformation found in the solid state.

Fig. 1. Displacement-ellipsoid drawing (50% probability) (Erlebacher \& Carrell, 1992), with \mathbf{H} atoms drawn as small circles of arbitrary radii. The labeling scheme refers to that of phenanthrene (Trotter, 1963).

Experimental

The title compound was prepared by metallation of $9,10-$ dimethylphenanthrene with 2.1 equivalents of LochmannSchlosser base (Lochmann, Pospisil \& Lim, 1966; Schlosser, 1967) and quenching with $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$. After evaporation, the crude product was purified chromatographically ($\mathrm{Al}_{2} \mathrm{O}_{3} /$ hexane). Suitable crystals were obtained from hexane. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.68(m, 2 \mathrm{H}), 8.08(m, 2 \mathrm{H})$, $7.61(m, 4 \mathrm{H}), 2.41(s, 4 \mathrm{H}), 0.35(s, 6 \mathrm{H})$ p.p.m. ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.2,132.5,129.7,126.3,125.7$, 125.3, 122.5, 19.3, -1.8 p.p.m. ${ }^{29}$ Si NMR ($99.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.3$ p.p.m. MS: $262\left(M^{+}, 53 \%\right), 248\left(M^{+}-\mathrm{CH}_{2}, 100 \%\right), 247$ ($M^{+}-\mathrm{Me}, 100 \%$); m.p. $433-434 \mathrm{~K}$.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Si}$
$M_{r}=262.43$
Orthorhombic
Pbca
$a=10.005$ (3) \AA
$b=17.535$ (3) \AA
$c=16.509$ (2) \AA
$V=2896(2) \AA^{3}$
$Z=8$
$D_{x}=1.20 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54184 \AA$
Cell parameters from 25 reflections
$\theta=23-23^{\circ}$
$\mu=1.263 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Irregular parallelepiped
$0.65 \times 0.60 \times 0.40 \mathrm{~mm}$
Colorless

Data collection

Refinement

Refinement on F
$R=0.040$
$w R=0.059$
$S=2.203$
2240 reflections
245 parameters
H atoms refined isotropically
$w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$
$\left.+0.0016 F_{o}{ }^{4}\right]$
$(\Delta / \sigma)_{\max }=0.002$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.20 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \\
& \quad \text { isotropic (Zachariasen, } \\
& \quad 1963 \text {) } \\
& \text { Extinction coefficient: } \\
& \quad 0.14 \times 10^{-5}
\end{aligned}
$$

Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

$\mathrm{Si}-\mathrm{C} 15$	$1.879(1)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.390(2)$
$\mathrm{Si}-\mathrm{C} 16$	$1.874(1)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.374(2)$
$\mathrm{Si}-\mathrm{C} 17$	$1.853(2)$	$\mathrm{C} 8-\mathrm{C} 14$	$1.401(2)$
$\mathrm{Si}-\mathrm{C} 18$	$1.854(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.358(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.372(2)$	$\mathrm{C} 9-\mathrm{C} 14$	$1.446(2)$
$\mathrm{C} 1-\mathrm{C} 11$	$1.407(2)$	$\mathrm{C} 9-\mathrm{C} 15$	$1.516(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.388(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.449(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.365(2)$	$\mathrm{C} 10-\mathrm{C} 16$	$1.512(2)$
$\mathrm{C} 4-\mathrm{C} 12$	$1.413(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.420(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.360(2)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.450(2)$
$\mathrm{C} 5-\mathrm{C} 13$	$1.410(2)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.418(2)$
$\mathrm{C} 15-\mathrm{Si}-\mathrm{C} 16$	$95.20(6)$	$\mathrm{C} 16-\mathrm{Si}-\mathrm{C} 18$	$114.3(1)$
$\mathrm{C} 15-\mathrm{Si}-\mathrm{C} 17$	$111.28(8)$	$\mathrm{C} 17-\mathrm{Si}-\mathrm{C} 18$	$111.16(9)$
$\mathrm{C} 15-\mathrm{Si}-\mathrm{C} 18$	$113.06(7)$	$\mathrm{Si}-\mathrm{C} 15-\mathrm{C} 9$	$104.17(8)$
$\mathrm{C} 16-\mathrm{Si}-\mathrm{C} 17$	$110.95(8)$	$\mathrm{Si}-\mathrm{C} 16-\mathrm{C} 10$	$104.23(8)$

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977). Cell refinement: CAD-4 Operations Manual. Data reduction: BEGIN in SDP-Plus (Frenz, 1990). Program(s) used to solve structure: FOUR in SDP-Plus. Program(s) used to refine structure: $L S F M$ in SDP-Plus. Molecular graphics: ICRVIEW (Erlebacher \& Carrell, 1992). Software used to prepare material for publication: CIFVAX in MolEN (Fair, 1990).

The authors thank Dr Ulli Englert for helpful discussions.

[^0]
References

Dewar, M. J. S. \& Jie, C. (1987). Organometallics, 6, 1486-1490. Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.

Erlebacher, J. \& Carrell, H. L. (1992). ICRVIEW. The Institute of Cancer Research, The Fox Chase Cancer Center, Philadelphia, USA.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Frenz, B. A. (1990). Enraf-Nonius SDP-Plus Structure Determination Package. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, O. \& Jones, D. W. (1989). Z. Kristallogr. 189, 109-116
Lochmann, L., Pospisil, J. \& Lim, D (1966). Tetrahedron Lett. pp. 257-262.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Schlosser, M. (1967). J. Organomet. Chem. 8, 9-16.
Trotter, J. (1963). Acta Cryst. 16, 605-607.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1997). C53, 345-346

1,3-Bis(p-fluorophenyl)triazene

Romana Anulewicz

Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland. E-mail: ranul@chem.uw.edu.pl
(Received 8 July 1996; accepted 7 November 1996)

Abstract

Molecules of the title compound, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{~N}_{3}$, contain a triazene group ($-\mathrm{N}=\mathrm{N}-\mathrm{NH}$), having an extended conformation, and are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form chains.

Comment

p-Substituted derivatives of formamidine having the amidine group ($\mathrm{N}=\mathrm{CH}-\mathrm{NH}$) form cyclic dimers in crystals as a result of two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Anulewicz, Krygowski \& Pniewska, 1987, 1990; Anulewicz, Krygowski, Jaroszewska-Manaj \& Pniewska, 1991; Anulewicz, Wawer, Krygowski, Männle \& Limbach, 1997). The structure of $1,3-\operatorname{bis}(p$ fluorophenyl)triazene, (I) (Fig. 1), has been determined in order to check whether the title molecule, containing a triazene group ($-\mathrm{N}=\mathrm{N}-\mathrm{NH}$), forms similar dimers. The triazene group adopts an extended conformation with the 1,3-positioned phenyl rings arranged cis with respect to one another. The same arrangement is observed in other 1,3-diaryltriazene derivatives (Walton, Jenkins \& Neidle, 1991). The molecule is nearly planar and the angles between the triazene group and the phenyl rings are 1.1 (3) and $10.1(3)^{\circ}$.

(I) ISSN 0108-2701 © 1997

[^0]: Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: MU1274). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

